欢迎来到哈尔滨理工大学新闻网!
新闻网
通知公告 当前位置: 首页 > 通知公告 > 正文

学术报告通知

作者:佚名责任编辑:王宏来源: 日期时间:2019-05-30 08:29:44点击:

报告时间:2019年5月31日上午10:10—12:00

报告地点:西区新主楼E1113-1114

报告题目1On derivations, biderivations and triple homomorphismsfor certain Jordan algebras

报告人:陈良云教授

报告题目2Generalized oscillator representations of the twisted Heisenberg-Virasoro algebra

报告人:赵开明教授

欢迎相关研究方向教师、研究生及全校感兴趣的师生踊跃参加学术报告会并广泛交流!

报告1摘要:

In this talk, I will introduce several results on derivations, biderivations and triple homomorphisms for certain Jordan algebras. For the semi-simple Jordan algebras over a field of characteristic 0, we give the sufficient and necessary conditions that their derivation algebras are simple. For more general ones, perfect Jordan algebras, we focus on their biderivations and triple homomorphisms. We describe biderivations by the centroid on a perfect and centerless Jordan algebra. We also study the relation between homomorphisms and triple homomorphisms on perfect Jordan algebras, and give a sufficient and necessary condition for a triple homomorphism to be a homomorphism. This is a joint work with Chenrui Yao and Yao Ma.

报告2摘要:

A general result on sufficient conditions for tensor product modules to be simple over an arbitrary Lie algebra will be given. All simple smooth modules over the infinite-dimensional Heisenberg algebra will be obtained. Using generalized oscillator representations we give the necessary and sufficient conditions for Whittaker modules over the Heisenberg algebra to be simple. The ``shifting technique" will be used to determine the necessary and sufficient conditions for the tensor products of highest weight modules and modules of intermediate series over the Heisenberg algebra to be simple.

专家简介:

陈良云,东北师范大学数学与统计学院教授、博士生导师。南开大学理学博士,哈尔滨工业大学博士后,东京大学博士后。吉林省拔尖创新人才、吉林省教育厅新世纪优秀人才、长春市有突出贡献专家,全国首批优秀创新创业导师、省级精品课负责人。主要研究方向李超代数及其应用。主持国家自然科学基金4项、省部级项目4项,发表SCI论文80余篇。担任6个国外期刊编委,国家自然科学基金、万人计划领军人才等同行评议专家。吉林省优秀博士毕业论文指导教师。

赵开明,加拿大罗瑞尔大学教授,东北师范大学“东师学者”讲座教授。中国科学院数学与统计学院博士,导师万哲先院士。主要从事李代数、非交换代数等领域研究工作,发表学术论文128篇,主持完成加拿大研究理事会基金项目3项、国家自然科学基金面上项目多项,国际代数学领域有影响的代数学家。

相关文章
读取内容中,请等待...
热点